352 research outputs found

    Event Data Definition in LHCb

    Full text link
    We present the approach used for defining the event object model for the LHCb experiment. This approach is based on a high level modelling language, which is independent of the programming language used in the current implementation of the event data processing software. The different possibilities of object modelling languages are evaluated, and the advantages of a dedicated model based on XML over other possible candidates are shown. After a description of the language itself, we explain the benefits obtained by applying this approach in the description of the event model of an experiment such as LHCb. Examples of these benefits are uniform and coherent mapping of the object model to the implementation language across the experiment software development teams, easy maintenance of the event model, conformance to experiment coding rules, etc. The description of the object model is parsed by means of a so called front-end which allows to feed several back-ends. We give an introduction to the model itself and to the currently implemented back-ends which produce information like programming language specific implementations of event objects or meta information about these objects. Meta information can be used for introspection of objects at run-time which is essential for functionalities like object persistency or interactive analysis. This object introspection package for C++ has been adopted by the LCG project as the starting point for the LCG object dictionary that is going to be developed in common for the LHC experiments. The current status of the event object modelling and its usage in LHCb are presented and the prospects of further developments are discussed.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 2 eps figures. PSN MOJT00

    Design and engineering of a simplified workflow execution for the MG5aMC event generator on GPUs and vector CPUs

    Full text link
    Physics event generators are essential components of the data analysis software chain of high energy physics experiments, and important consumers of their CPU resources. Improving the software performance of these packages on modern hardware architectures, such as those deployed at HPC centers, is essential in view of the upcoming HL-LHC physics programme. In this paper, we describe an ongoing activity to reengineer the Madgraph5_aMC@NLO physics event generator, primarily to port it and allow its efficient execution on GPUs, but also to modernize it and optimize its performance on vector CPUs. We describe the motivation, engineering process and software architecture design of our developments, as well as the current challenges and future directions for this project. This paper is based on our submission to vCHEP2021 in March 2021,complemented with a few preliminary results that we presented during the conference. Further details and updated results will be given in later publications.Comment: 17 pages, 6 figures, submitted to vCHEP2021 proceedings in EPJ Web of Conferences; minor changes to address comments from the EPJWOC reviewe

    Speeding up Madgraph5 aMC@NLO through CPU vectorization and GPU offloading: towards a first alpha release

    Full text link
    The matrix element (ME) calculation in any Monte Carlo physics event generator is an ideal fit for implementing data parallelism with lockstep processing on GPUs and vector CPUs. For complex physics processes where the ME calculation is the computational bottleneck of event generation workflows, this can lead to large overall speedups by efficiently exploiting these hardware architectures, which are now largely underutilized in HEP. In this paper, we present the status of our work on the reengineering of the Madgraph5_aMC@NLO event generator at the time of the ACAT2022 conference. The progress achieved since our previous publication in the ICHEP2022 proceedings is discussed, for our implementations of the ME calculations in vectorized C++, in CUDA and in the SYCL framework, as well as in their integration into the existing MadEvent framework. The outlook towards a first alpha release of the software supporting QCD LO processes usable by the LHC experiments is also discussed.Comment: 7 pages, 4 figures, 4 tables; submitted to ACAT 2022 proceedings in IO

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6

    Observation of the decay B0s→ψ(2S)K+π−

    Get PDF
    The decay BÂŻs0→ψ(2S)K+π− is observed using a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. The branching fraction relative to the B0→ψ(2S)K+π− decay mode is measured to be B(BÂŻs0→ψ(2S)K+π−)B(B0→ψ(2S)K+π−)=5.38±0.36(stat)±0.22(syst)±0.31(fs/fd)%, where fs/fd indicates the uncertainty due to the ratio of probabilities for a b quark to hadronise into a Bs0 or B0 meson. Using an amplitude analysis, the fraction of decays proceeding via an intermediate K⁎(892)0 meson is measured to be 0.645±0.049(stat)±0.049(syst) and its longitudinal polarisation fraction is 0.524±0.056(stat)±0.029(syst) . The relative branching fraction for this component is determined to be B(BÂŻs0→ψ(2S)K⁎(892)0)B(B0→ψ(2S)K⁎(892)0)=5.58±0.57(stat)±0.40(syst)±0.32(fs/fd)%. In addition, the mass splitting between the Bs0 and B0 mesons is measured as M(Bs0)−M(B0)=87.45±0.44(stat)±0.09(syst) MeV/c2

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF

    A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±→[KS0K±π∓]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±→[KS0K∓π±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D‟0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb−1^{-1}. The analysis is sensitive to the CP-violating CKM phase Îł\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of Îł\gamma using other decay modes

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7 (norm))×10−8\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0→π+π−Ό+Ό−)=(2.11±0.51 (stat)±0.15 (syst)±0.16 (norm))×10−8\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K∗(890)0(→K+π−)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό− and B0→π+π−Ό+Ό− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό− and the first evidence of the decay B0→π+π−Ό+Ό− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−Ό+Ό−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό− and B0→π+π−Ό+Ό− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό− and the first evidence of the decay B0→π+π−Ό+Ό− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−Ό+Ό−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7 (norm))×10−8\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0→π+π−Ό+Ό−)=(2.11±0.51 (stat)±0.15 (syst)±0.16 (norm))×10−8\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K∗(890)0(→K+π−)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation
    • 

    corecore